Pages 1 2 3


The sniper begins the aiming process by aligning the rifle with the target when assuming a firing position. He should point the rifle naturally at the desired point of aim. If his muscles are used to adjust the weapon onto the point of aim, they automatically relax as the rifle fires, and the rifle begins to move toward its natural point of aim. Because this movement begins just before the weapon discharge, the rifle is moving as the bullet leaves the muzzle. This causes inaccurate shots with no apparent cause (recoil disguises the movement). By adjusting the weapon and body as a single unit, rechecking, and readjusting as needed, the sniper achieves a true natural point of aim. Once the position is established, the sniper then aims the weapon at the exact point on the target. Aiming involves: eye relief, sight alignment, and sight picture.

a. Eye Relief. This is the distance from the sniper's firing eye to the rear sight or the rear of the scope tube. When using iron sights, the sniper ensures the distance remains consistent from shot to shot to preclude changing what he views through the rear sight. However, relief will vary from firing position to firing position and from sniper to sniper, according to the sniper's neck
length, his angle of head approach to the stock, the depth of his shoulder pocket, and his firing position. This distance  is more rigidly controlled with telescopic sights than with iron sights. The sniper must take care to prevent eye injury caused by the scope tube striking his brow during recoil. Regardless of the sighting system he uses, he must place his head as upright as possible with his firing eye located directly behind the rear portion of the sighting system. This head placement also allows the muscles surrounding his eye to relax. Incorrect head placement causes the sniper to look out of the top or corner of his eye, resulting in muscular strain. Such strain leads to blurred vision and can also cause eye strain. The sniper can avoid eye strain by not staring through the telescopic or iron sights for extended periods. The best aid to consistent eye relief is maintaining the same stock weld from shot to shot.

b. Sight Alignment. With telescopic sights, sight alignment is the relationship between the cross hairs (reticle) and a full field of view as seen by the sniper. The sniper must place his head so that a full field of view fills the tube, with no dark shadows or crescents to cause inaccurate shots. He centers the reticle in a full field of view, ensuring the vertical cross hair is straight up and down so the rifle is not canted. Again, the center is easiest for the sniper to locate and allows for consistent reticle placement. With iron sights, sight alignment is the relationship between the front and rear sights as seen by the sniper . The sniper centers the top edge of the front sight blade horizontally and vertically within the rear aperture. (The center of aperture is easiest for the eye to locate and allows the sniper to be consistent in blade location.)

c. Sight Picture. With telescopic sights, the sight picture is the relationship between the reticle and full field of view and the target as seen by the sniper. The sniper centers the reticle in a full field of view. He then places the reticle center of the largest visible mass of the target (as in iron sights). The center of mass of the target is easiest for the sniper to locate, and it surrounds the intended point of impact with a maximum amount of target area. With iron sights, sight picture is the relationship between the rear
aperture, the front sight blade, and the target as seen by the sniper . The sniper centers the top edge of the blade in the rear aperture. He then places the top edge of the blade in the center of the largest visible mass of the target (disregard the head and use the center of the torso).

d. Sight Alignment Error. When sight alignment and picture are perfect (regardless of sighting system) and all else is done correctly, the shot will hit center of mass on the target. However, with an error insight alignment, the bullet is displaced in the direction of the error. Such an error creates an angular displacement between the line of sight and the line of bore. This displacement increases as range increases; the amount of bullet displacement depends on the size of alignment error. Close targets
show little or no visible error. Distant targets can show great displacement or can be missed altogether due to severe sight misalignment. An inexperienced sniper is prone to this kind of error, since he is unsure of what correctly aligned sights look like (especially telescopic sights); a sniper varies his head position (and eye relief) from shot to shot, and he is apt to make mistakes while firing.

e. Sight Picture Error. An error in sight picture is an error in the placement of the aiming point. This causes no displacement between the line of sight and the line of bore. The weapon is simply pointed at the wrong spot on the target. Because no displacement exists as range increases, close and far targets are hit or missed depending on where the front sight or the reticle is when the rifle fires. All snipers face this kind of error every time they shoot. This is because, regardless of firing position stability, the weapon will always be moving. A supported rifle moves much leas than an unsupported one, but both still move in what is known as a wobble area. The sniper must adjust his firing position so that his wobble area is as small as possible and centered on the target. With proper adjustments, the sniper should be able to fire the shot while the front sight blade or reticle is on the target at, or very near, the desired aiming point. How far the blade or reticle is from this point when the weapon fires is the amount of sight picture error all snipers face.

f. Dominant Eye. To determine which eye is dominant, the sniper extends one arm to the front and points the index finger skyward to select an aiming point. With both eyes open, he aligns the index finger with the aiming point, then closes one eye at a time while looking at the aiming point. One eye will make the finger appear to move off the aiming point; the other eye will stay on the aiming point. The dominant eye is the eye that does not move the finger from the aiming point. Some individuals may have difficulty aiming because of interference from their dominant eye, if this is not the eye used in the aiming process. This may require the sniper to fire from the other side of the weapon (right-handed shooter will fire left-handed). Such individuals must close the dominant eye while shooting.


Breath control is important with respect to the aiming process. If the sniper breathes while trying to aim, the rise and fall of his chest causes the rifle to move. He must, therefore, accomplish sight alignment during breathing. To do this, he first inhales then exhales normally and stops at the moment of natural respiratory pause.

a. A respiratory cycle lasts 4 to 5 seconds. Inhalation and exhalation require only about 2 seconds. Thus, between each respiratory cycle there is a pause of 2 to 3 seconds. This pause can be extended to 10 seconds without any special effort or unpleasant sensations. The sniper should shoot during this pause when his breathing muscles relax. This avoids strain on his diaphragm.

b. A sniper should assume his firing position and breathe naturally until his hold begins to settle. Many snipers then take a slightly deeper breath, exhale, and pause, expecting to fire the shot during the pause. If the hold does not settle enough to allow the shot to be fired, the sniper resumes normal breathing and repeats the process.

c. The respiratory pause should never feel unnatural. If it is too long, the body suffers from oxygen deficiency and sends out signals to resume breathing. These signals produce involuntary movements in the diaphragm and interfere with the sniper's ability to concentrate. About 8 to 10 seconds is the maximum safe period for the respiratory pause. During multiple, rapid engagements, the breathing cycle should be forced through a rapid, shallow cycle between shots instead of trying to hold the breath or breathing.
Firing should be accomplished at the forced respiratory pause.


Trigger control is the most important of the sniper marksmanship fundamentals. It is defined as causing the rifle to fire when the sight picture is at its best, without causing the rifle to move. Trigger squeeze is uniformly increasing pressure straight to the rear until the rifle fires.

a. Proper trigger control occurs when the sniper places his firing finger as low on the trigger as possible and still clears the trigger guard, thereby achieving maximum mechanical advantage and movement of the finger to the entire rifle.

b. The sniper maintains trigger control beat by assuming a stable position, adjusting on the target, and beginning a breathing cycle. As the sniper exhales the final breath toward a natural respiratory pause, he secures his finger on the trigger. As the front blade or reticle settles at the desired point of aim, and the natural respiratory pause is entered, the sniper applies initial pressure. He increases the tension on the trigger during the respiratory pause as long as the front blade or reticle remains in the area of the
target that ensures a well-placed shot. If the front blade or reticle moves away from the desired point of aim on the target, and the pause is free of strain or tension, the sniper stops increasing the tension on the trigger, waits for the front blade or reticle to return to the desired point, and then continues to squeeze the trigger. If movement is too large for recovery or if the pause has become uncomfortable (extended too long), the sniper should carefully release the pressure on the trigger and begin the respiratory cycle again.

c. As the stability of a firing position decreases, the wobble area increases. The larger the wobble area, the harder it is to fire the shot without reacting to it. This reaction occurs when the sniper--

     (1) Anticipates recoil. The firing shoulder begins to move forward just before the round fires.

     (2) Jerks the trigger. The trigger finger moves the trigger in a quick, choppy, spasmodic attempt to fire the shot before the front blade or reticle can move away from the desired point of aim.

     (3) Flinches. The sniper's entire upper body (or parts thereof) overreacts to anticipated noise or recoil. This is usually due to unfamiliarity with the weapon.

     (4) Avoids recoil. The sniper tries to avoid recoil or noise by moving away from the weapon or by closing the firing eye just before the round fires. This, again, is caused by a lack of knowledge of the weapon's actions upon firing.


Applying the fundamentals increases the odds of a well-aimed shot being fired. When mastered, additional skills can make that first-round kill even more of a certainty. One of these skills is the follow-through.

a. Follow-through is the act of continuing to apply all the sniper marksmanship fundamentals as the weapon fires as well as immediately after it fires. It consists of:

    (1) Keeping the head infirm contact with the stock (stock weld).

    (2) Keeping the finger on the trigger all the way to the rear.

    (3) Continuing to look through the rear aperture or scope tube.

    (4) Keeping muscles relaxed.

    (5) Avoiding reaction to recoil and or noise.

    (6) Releasing the trigger only after the recoil has stopped.

b. A good follow-through ensures the weapon is allowed to fire and recoil naturally. The sniper/rifle combination reacts as a single unit to such actions.


Calling the shot is being able to tell where the round should impact on the target. Because live targets invariably move when hit, the sniper will find it almost impossible to use his scope to locate the target after the round is fired. Using iron sights, the sniper will find that searching for a downrange hit is beyond his abilities. He must be able to accurately call his shots. Proper follow-through will aid in calling the shot. The dominant factor in shot calling is knowing where the reticle or blade is located when the weapon
discharges. This location is called the final focus point.

a. With iron sights, the final focus point should be on the top edge of the front sight blade. The blade is the only part of the sight picture that is moving (in the wobble area). Focusing on it aids in calling the shot and detecting any errors insight alignment or sight picture. Of course, lining up the sights and the target initially requires the sniper to shift his focus from the target to the blade and back until he is satisfied that he is properly aligned with the target. This shifting exposes two more facts about eye focus. The eye can instantly shift focus from near objects (the blade) to far objects (the target).

b. The final focus is easily placed with telescopic sights because of the sight's optical qualities. Properly focused, a scope should present both the field of view and the reticle in sharp detail. Final focus should then be on the target. While focusing on the target, the sniper moves his head slightly from side to side. The reticle may seem to move across the target face, even though the rifle and scope are motionless. This movement is parallax. Parallax is present when the target image is not correctly focused on the reticle's focal plane. Therefore, the target image and the reticle appear to be in two separate positions inside the scope, causing the effect of reticle movement across the target. The M3A scope on the M24 has a focus adjustment that eliminates parallax in the scope. The sniper should adjust the focus knob until the target's image is on the same focal plane as the reticle. To determine if the target's image appears at the ideal location, the sniper should move his head slightly left and right to see if the reticle appears to move. If it does not move, the focus is properly adjusted and no parallax will be present.


Once the sniper has been taught the fundamentals of marksmanship, his primary concern is his ability to apply it in the performance of his mission. An effective method of applying fundamentals is through the use of the integrated act of firing one round. The integrated act is a logical, step-by-step development of fundamentals whereby the sniper can develop habits that enable him to fire each shot the same way. The integrated act of firing can be divided into four distinct phases:

a. Preparation Phase. Before departing the preparation area, the sniper ensures that--

    (1) The team is mentally conditioned and knows what mission they are to accomplish.

    (2) A systematic check is made of equipment for completeness and serviceability including, but not limited to--

      (a) Properly cleaned and lubricated rifles.

      (b) Properly mounted and torqued scopes.

      (c) Zero-sighted systems and recorded data in the sniper data book.

      (d) Study of the weather conditions to determine their possible effects on the team's performance of the mission.

b. Before-Firing Phase. On arrival at the mission site, the team exercises care in selecting positions. The sniper ensures the selected positions support the mission. During this phase, the sniper--
    (1) Maintains strict adherence to the fundamentals of position. He ensures that the firing position is as relaxed as possible, making the most of available external support. He also makes sure the support is stable, conforms to the position, and allows a correct, natural point of aim for each designated area or target.

    (2) Once in position, removes the scope covers and checks the field(s) of fire, making any needed corrections to ensure clear, unobstructed firing lanes.

    (3) Makes dry firing and natural point of aim checks.

    (4) Double-checks ammunition for serviceability and completes final magazine loading.

    (5) Notifies the observer he is ready to engage targets. The observer must be constantly aware of weather conditions that may affect the accuracy of the shots. He must also stay ahead of the tactical situation.

c. Firing Phase. Upon detection, or if directed to a suitable target, the sniper makes appropriate sight changes, aims, and tells the observer he is ready to fire. The observer then gives the needed windage and observes the target. To fire the rifle, the sniper should remember the key word, "BRASS." Each letter is explained as follows:
    (1) Breathe. The sniper inhales and exhales to the natural respiratory pause. He checks for consistent head placement and stock weld. He ensures eye relief is correct (full field of view through the scope; no shadows present). At the same time, he begins aligning the cross hairs or front blade with the target at the desired point of aim.

    (2) Relax. As the sniper exhales, he relaxes as many muscles as possible, while maintaining control of the weapon and position.

    (3) Aim. If the sniper has a good, natural point of aim, the rifle points at the desired target during the respiratory pause. If the aim is off, the sniper should make a slight adjustment to acquire the desired point of aim. He avoids "muscling" the weapon toward the aiming point.

    (4) Squeeze. As long as the sight picture is satisfactory, the sniper squeezes the trigger. The pressure applied to the trigger must be straight to the rear without disturbing the lay of the rifle or the desired point of aim.

d. After-Firing Phase. The sniper must analyze his performance If the shot impacted at the desired spot (a target hit), it may be assumed the integrated act of firing one round was correctly followed. If however, the shot was off call, the sniper and observer must check for possible errors.
    (1) Failure to follow the keyword, BRASS (partial field of view, breath held incorrectly, trigger jerked, rifle muscled into position, and so on).

    (2) Target improperly ranged with scope (causing high or low shots).

    (3) Incorrectly compensated for wind (causing right or left shots).

    (4) Possible weapon/ammunition malfunction (used only as a last resort when no other errors are detected).

    Once the probable reasons for an off-call shot is determined the sniper must make note of the errors. He pays close attention to the problem areas to increase the accuracy of future shots.

Pages 1 2 3

Contact us for more info